Self-consistent design considerations for
commercial laser fusion energy

IFE Workshop, LLNL, 16 Nov 2021

Prof. Mike Du'nheﬁ;%‘Sé-
on behalf of the LIFE teatr

mike.dunne@stanford.edu




The LIFE program integrated the work of a team of

national labs, universities, industry and end-users
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Plant, technology and materials development engaged over 80 vendor partners



A broad group of end-users were consulted to
determine the operational requirements for IFE
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requirements partnerships policy, economics
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Policy and Economics
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These end-user requirements drove major decisions on the plant design



Top level requirements: moving from physics and
concepts to integrated solutions for the energy sector
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Addressing the end-user requirements
1/5: High assurance of performance

Driver: Fusion performance risk
Design: Testable on the NIF
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Driver: System efficiency
Design: Diode-pumped lasers

Driver: Robust laser ops (>kW, GShot)
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Driver: Maintainability & construction risk
Design: Dual pinholes, Decoupled optics
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Addressing the end-user requirements

2/5: Fuel system delivery

Driver: Onsite Tritium inventory
Design: Wetted foams (no layering)

liquid D2 layer

From: R. Olsen et al (LANL)

Driver: Chamber compatibility

Design: Pb hohlraum (no plating), Xe gas
(ion, X-ray ranging) and Oxygen (exhaust)
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Driver: Fuel integrity
Design: Thermo-mechanical shields

Driver: Reliable injection & engagement
Design: Glint triggers and steers the lasers
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Manufacturing designs & tolerances need to be testable on the NIF




Addressing the end-user requirements
3/5: Chamber performance, survival and deployability

Driver: First wall lifetime Driver: Regulatory approval (NRC, ASME)
Design: Separate engine from chamber Design: Conventional F/M steels

[
Chamber is separate from the optical
system and vacuum (gas) system
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Driver: Thermal performance, corrosion Driver: Chamber reset at 10 Hz
Design: Segmented wall and blanket Design: Quasi-static 1% circulation




Addressing the end-user requirements

4/5: Attractive safety basis

Driver: Low, segregated tritium inventory

Design: Liquid metal coolant

¥ Storage & Delivery System
¥ Gas Handling System
¥ Target Factory

¥ Dissolved in Li

¥ Isotope Separation System

¥ Structural Materials

Separating
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Driver: Offsite hazards
Design: Fuel design & Ternary alloys

Driver: Class-A waste stream
Design: Low activation steel design

Seamless diffusion bond!

“LIFE-12” RA-FM steel
Waste Disposal Rating < 0.1

Driver: Low activation structures

Properties of Lithium Li;;Pbg; FLiBe Ceramic® New Li
Interest Ternary

Melt (C) 181 235 363 N/A <400
Boiling (C) 1317 N/A 1430 N/A >1000
Density (kg/m3) 505 9500 1970  1600-3600 1670
Th. Cond. (W/m-K) 46 13 1 14 53

Specific heat (J/kg-K) 4260 188 2380 1176 4930

Tritium Permeation/ 2 . z
Separation issues Lo tigh High High

Beryllium required No No Yes
SLi enrichment No No Maybe Yes
Corrosion issues Low High Med. Low
MHD issues Yes Yes No No

Chemical reactivity m Low Low
bl

Design: Separability of lifetime components
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Addressing the end-user requirements

5/5: Plant economics & concept of operations

Driver: High availability for baseload
Design: Hot swappable lasers & optics

Driver: Factory built systems
Design: Modular “LRU” designs

Driver: Capital cost
Design: Commercial components

2009 Industry Consensus: 3¢/W @ 500 W/bar, with no new R&D
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Driver: Operating costs
Design: Fuel mass manufacturing plant
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Together, we need to assemble an integrated technical
development plan that retires risk and ensures self-consistency
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The ability to access the NIF, and the separability of many technical subsystems

provides an attractive basis for a national IFE program in the US
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Areas for priority technology development include...

Tritium processing systems (from gas, liquid metals, ...)

» Target (fuel) manufacturing processes

« Coolant loop materials: corrosion, impurities, chemical reactivity, ...

« Structural materials: impurity levels for bulk production, cyclic stresses, ...

« Chamber gas/liquid chemistry (recovery, waste, clogging)

 Final Optics survival and hot-swap changeout

* Injection, tracking, engagement, and timing systems

... in addition to the underpinning target and driver performance developments

1"



It is important to recognize the scale and connectivity
of the technical challenges ahead ...

Inertial Confinement Fusion Power Plants

» Over a dozen integrated IFE power N oA A T R TR S O

plant design studies have been R s
performed.
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Let’s ensure we take full advantage of the extensive work performed to date
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National Academies (2013) Conclusion 4-13, “The appropriate time for the
establishment of a national, coordinated, broad-based inertial fusion energy program
within DOE would be when ignition is achieved.”
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